Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Private Information Retrieval from Locally Repairable Databases with Colluding Servers (1901.02938v3)

Published 9 Jan 2019 in cs.IT and math.IT

Abstract: We consider information-theoretical private information retrieval (PIR) from a coded database with colluding servers. We target, for the first time, locally repairable storage codes (LRCs). We consider any number of local groups $ g $, locality $ r $, local distance $ \delta $ and dimension $ k $. Our main contribution is a PIR scheme for maximally recoverable (MR) LRCs based on linearized Reed--Solomon codes, which achieve the smallest field sizes among MR-LRCs for many parameter regimes. In our scheme, nodes are identified with codeword symbols and servers are identified with local groups of nodes. Only locally non-redundant information is downloaded from each server, that is, only $ r $ nodes (out of $ r+\delta-1 $) are downloaded per server. The PIR scheme achieves the (download) rate $ R = (N - k - rt + 1)/N $, where $ N = gr $ is the length of the MDS code obtained after removing the local parities, and for any $ t $ colluding servers such that $ k + rt \leq N $. For an unbounded number of stored files, the obtained rate is strictly larger than those of known PIR schemes that work for any MDS code. Finally, the obtained PIR scheme can also be adapted when communication between the user and each server is performed via linear network coding, achieving the same rate as previous PIR schemes for this scenario but with polynomial finite field sizes, instead of exponential. Our rates are equal to those of PIR schemes for Reed--Solomon codes, but Reed--Solomon codes are incompatible with the MR-LRC property or linear network coding, thus our PIR scheme is less restrictive in its applications.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (42)
  1. K. Banawan and S. Ulukus. The capacity of private information retrieval from coded databases. IEEE Trans. Info. Theory, 64(3), 2018.
  2. PIR schemes with small download complexity and low storage requirements. In Proc. IEEE Int. Symp. Info. Theory, pages 146–150, June 2017.
  3. Partial-MDS codes and their application to RAID type of architectures. IEEE Trans. Info. Theory, 59(7):4510–4519, July 2013.
  4. G. Calis and O. O. Koyluoglu. A general construction for PMDS codes. IEEE Communications Letters, 21(3):452–455, March 2017.
  5. Locally repairable codes with multiple (ri,δi)subscript𝑟𝑖subscript𝛿𝑖(r_{i},\delta_{i})( italic_r start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT , italic_δ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT )-localities. In Proc. IEEE Int. Symp. Info. Theory, pages 2038–2042, June 2017.
  6. Private information retrieval. In Proce. 36th Annual Symposium on Foundations of Computer Science, FOCS ’95, pages 41–, 1995.
  7. Private information retrieval. J. ACM, 45(6):965–981, November 1998.
  8. Elements of Information Theory. Wiley-Interscience, 2006.
  9. One-shot PIR: Refinement and lifting. IEEE Trans. Info. Theory, 66(4):2443–2455, 2020.
  10. Codes for distributed PIR with low storage overhead. In Proc. IEEE Int. Symp. Info. Theory, pages 2852–2856, June 2015.
  11. Private information retrieval from coded databases with colluding servers. SIAM J. App. Algebra and Geometry, 1(1):647–664, 2017.
  12. E. M. Gabidulin. Theory of codes with maximum rank distance. Problems Inform. Transmission, 21(1):1–12, 1985.
  13. Explicit maximally recoverable codes with locality. IEEE Trans. Info. Theory, 60(9):5245–5256, Sept 2014.
  14. On the locality of codeword symbols. IEEE Trans. Info. Theory, 58(11):6925–6934, Nov 2012.
  15. On maximally recoverable local reconstruction codes. Electr. Colloq. Comp. Complexity (ECCC), 24(183), 2017.
  16. Erasure coding in Windows Azure storage. In 2012 USENIX Annual Technical Conference, pages 15–26, Boston, MA, 2012.
  17. S. Kadhe and A. Sprintson. Codes with unequal locality. In Proc. IEEE Int. Symp. Info. Theory, pages 435–439, July 2016.
  18. Codes with local regeneration and erasure correction. IEEE Trans. Info. Theory, 60(8):4637–4660, Aug 2014.
  19. Private information retrieval schemes with product-matrix MBR codes. IEEE Transactions on Information Forensics and Security, 16:441–450, 2020.
  20. Linear network coding. IEEE Trans. Info. Theory, 49(2):371–381, February 2003.
  21. I. Márquez-Corbella and R. Pellikaan. A characterization of MDS codes that have an error correcting pair. Finite Fields and Their Applications, 40:224–245, 2016.
  22. U. Martínez-Peñas. Skew and linearized Reed-Solomon codes and maximum sum rank distance codes over any division ring. J. Algebra, 504:587–612, 2018.
  23. U. Martínez-Peñas and F. R. Kschischang. Reliable and secure multishot network coding using linearized reed-solomon codes. IEEE Trans. Info. Theory, 65(8):4785–4803, 2019.
  24. U. Martínez-Peñas and F. R. Kschischang. Universal and dynamic locally repairable codes with maximal recoverability via sum-rank codes. IEEE Trans. Info. Theory, 65(12):7790–7805, 2019.
  25. U. Martínez-Peñas and R. Pellikaan. Rank error-correcting pairs. Des., Codes, Crypto., 84(1-2):261–281, 2017.
  26. A. M. Nair and V. Lalitha. Maximally recoverable codes with hierarchical locality. In 2019 National Conference on Communications (NCC), pages 1–6, 2019. Preprint: https://arxiv.org/abs/1901.02867.
  27. O. Ore. Theory of non-commutative polynomials. Annals of Mathematics (2), 34(3):480–508, 1933.
  28. I. S. Reed and G. Solomon. Polynomial codes over certain finite fields. J. Soc. Ind. and Appl. Math., 8(2):300–304, 1960.
  29. XORing elephants: novel erasure codes for big data. In Proc. 39th int. conf. Very Large Data Bases, PVLDB’13, pages 325–336, 2013.
  30. One extra bit of download ensures perfectly private information retrieval. In Proc. IEEE Int. Symp. Info. Theory, pages 856–860, June 2014.
  31. V. Skachek. Batch and PIR codes and their connections to locally repairable codes. Network Coding and Subspace Designs, pages 427–442, 2018.
  32. H. Sun and S. A. Jafar. The capacity of private information retrieval. IEEE Trans. Info. Theory, 63(7):4075–4088, July 2017.
  33. H. Sun and S. A. Jafar. The capacity of robust private information retrieval with colluding databases. IEEE Trans. Info. Theory, 64(4):2361–2370, April 2018.
  34. H. Sun and S. A. Jafar. Private information retrieval from MDS coded data with colluding servers: Settling a conjecture by Freij-Hollanti et al. IEEE Trans. Info. Theory, 64(2):1000–1022, Feb 2018.
  35. Private information retrieval schemes for coded data with arbitrary collusion patterns. In Proc. IEEE Int. Symp. Info. Theory, pages 1908–1912, June 2017.
  36. Private information retrieval from MDS coded data in distributed storage systems. IEEE Trans. Info. Theory, 64(11):7081–7093, Nov 2018.
  37. R. Tajeddine and S. El Rouayheb. Private information retrieval from MDS coded data in distributed storage systems. In Proc. IEEE Int. Symp. Info. Theory, pages 1411–1415, July 2016.
  38. Private information retrieval over random linear networks. IEEE Transactions on Information Forensics and Security, 15:790–799, 2020.
  39. I. Tamo and A. Barg. A family of optimal locally recoverable codes. IEEE Trans. Info. Theory, 60(8):4661–4676, Aug 2014.
  40. S. Yekhanin. Locally Decodable Codes and Private Information Retrieval Schemes. Information Theory and Security, Springer, 1st edition, 2010.
  41. A. Zeh and E. Yaakobi. Bounds and constructions of codes with multiple localities. In Proc. IEEE Int. Symp. Info. Theory, pages 640–644, July 2016.
  42. Y. Zhang and G. Ge. A general private information retrieval scheme for MDS coded databases with colluding servers. 2017. Preprint: https://arxiv.org/abs/1704.06785.
Citations (15)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com