Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Minimal Incentive-based Demand Response Program With Self Reported Baseline Mechanism (1901.02923v3)

Published 9 Jan 2019 in cs.SY and eess.SY

Abstract: In this paper, we propose a novel incentive based Demand Response (DR) program with a self reported baseline mechanism. The System Operator (SO) managing the DR program recruits consumers or aggregators of DR resources. The recruited consumers are required to only report their baseline, which is the minimal information necessary for any DR program. During a DR event, a set of consumers, from this pool of recruited consumers, are randomly selected. The consumers are selected such that the required load reduction is delivered. The selected consumers, who reduce their load, are rewarded for their services and other recruited consumers, who deviate from their reported baseline, are penalized. The randomization in selection and penalty ensure that the baseline inflation is controlled. We also justify that the selection probability can be simultaneously used to control SO's cost. This allows the SO to design the mechanism such that its cost is almost optimal when there are no recruitment costs or at least significantly reduced otherwise. Finally, we also show that the proposed method of self-reported baseline outperforms other baseline estimation methods commonly used in practice.

Citations (35)

Summary

We haven't generated a summary for this paper yet.