Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Braided Rota-Baxter algebras, quantum quasi-shuffle algebras and braided dendriform algebras (1901.02843v1)

Published 9 Jan 2019 in math.QA, math-ph, math.MP, and math.RA

Abstract: Rota-Baxter algebras and the closely related dendriform algebras have important physics applications, especially to renormalization of quantum field theory. Braided structures provide effective ways of quantization such as for quantum groups. Continuing recent study relating the two structures, this paper considers Rota-Baxter algebras and dendriform algebras in the braided contexts. Applying the quantum shuffle and quantum quasi-shuffle products, we construct free objects in the categories of braided Rota-Baxter algebras and braided dendriform algebras, under the commutativity condition. We further generalize the notion of dendriform Hopf algebras to the braided context and show that quantum shuffle algebra gives a braided dendriform Hopf algebra. Enveloping braided commutative Rota-Baxter algebras of braided commutative dendriform algebras are obtained.

Summary

We haven't generated a summary for this paper yet.