Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Auto-weighted Mutli-view Sparse Reconstructive Embedding (1901.02352v1)

Published 5 Jan 2019 in cs.LG, eess.SP, and stat.ML

Abstract: With the development of multimedia era, multi-view data is generated in various fields. Contrast with those single-view data, multi-view data brings more useful information and should be carefully excavated. Therefore, it is essential to fully exploit the complementary information embedded in multiple views to enhance the performances of many tasks. Especially for those high-dimensional data, how to develop a multi-view dimension reduction algorithm to obtain the low-dimensional representations is of vital importance but chanllenging. In this paper, we propose a novel multi-view dimensional reduction algorithm named Auto-weighted Mutli-view Sparse Reconstructive Embedding (AMSRE) to deal with this problem. AMSRE fully exploits the sparse reconstructive correlations between features from multiple views. Furthermore, it is equipped with an auto-weighted technique to treat multiple views discriminatively according to their contributions. Various experiments have verified the excellent performances of the proposed AMSRE.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Huibing Wang (33 papers)
  2. Haohao Li (4 papers)
  3. Xianping Fu (25 papers)
Citations (5)

Summary

We haven't generated a summary for this paper yet.