Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Toughness and prism-hamiltonicity of $P_4$-free graphs (1901.01959v1)

Published 7 Jan 2019 in math.CO

Abstract: The \emph{prism} over a graph $G$ is the product $G \Box K_2$, i.e., the graph obtained by taking two copies of $G$ and adding a perfect matching joining the two copies of each vertex by an edge. The graph $G$ is called \emph{prism-hamiltonian} if it has a hamiltonian prism. Jung showed that every $1$-tough $P_4$-free graph with at least three vertices is hamiltonian. In this paper, we extend this to observe that for $k \geq 1$ a $P_4$-free graph has a spanning \emph{$k$-walk} (closed walk using each vertex at most $k$ times) if and only if it is $\frac{1}{k}$-tough. As our main result, we show that for the class of $P_4$-free graphs, the three properties of being prism-hamiltonian, having a spanning $2$-walk, and being $\frac{1}{2}$-tough are all equivalent.

Summary

We haven't generated a summary for this paper yet.