Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Understanding partition comparison indices based on counting object pairs (1901.01777v1)

Published 7 Jan 2019 in stat.ML and cs.LG

Abstract: In unsupervised machine learning, agreement between partitions is commonly assessed with so-called external validity indices. Researchers tend to use and report indices that quantify agreement between two partitions for all clusters simultaneously. Commonly used examples are the Rand index and the adjusted Rand index. Since these overall measures give a general notion of what is going on, their values are usually hard to interpret. Three families of indices based on counting object pairs are analyzed. It is shown that the overall indices can be decomposed into indices that reflect the degree of agreement on the level of individual clusters. The overall indices based on the pair-counting approach are sensitive to cluster size imbalance: they tend to reflect the degree of agreement on the large clusters and provide little to no information on smaller clusters. Furthermore, the value of Rand-like indices is determined to a large extent by the number of pairs of objects that are not joined in either of the partitions.

Citations (6)

Summary

We haven't generated a summary for this paper yet.