Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dynamic Programming for Sequential Deterministic Quantization of Discrete Memoryless Channels (1901.01659v4)

Published 7 Jan 2019 in cs.IT and math.IT

Abstract: In this paper, under a general cost function $C$, we present a dynamic programming (DP) method to obtain an optimal sequential deterministic quantizer (SDQ) for $q$-ary input discrete memoryless channel (DMC). The DP method has complexity $O(q (N-M)2 M)$, where $N$ and $M$ are the alphabet sizes of the DMC output and quantizer output, respectively. Then, starting from the quadrangle inequality, two techniques are applied to reduce the DP method's complexity. One technique makes use of the Shor-Moran-Aggarwal-Wilber-Klawe (SMAWK) algorithm and achieves complexity $O(q (N-M) M)$. The other technique is much easier to be implemented and achieves complexity $O(q (N2 - M2))$. We further derive a sufficient condition under which the optimal SDQ is optimal among all quantizers and the two techniques are applicable. This generalizes the results in the literature for binary-input DMC. Next, we show that the cost function of $\alpha$-mutual information ($\alpha$-MI)-maximizing quantizer belongs to the category of $C$. We further prove that under a weaker condition than the sufficient condition we derived, the aforementioned two techniques are applicable to the design of $\alpha$-MI-maximizing quantizer. Finally, we illustrate the particular application of our design method to practical pulse-amplitude modulation systems.

Citations (14)

Summary

We haven't generated a summary for this paper yet.