Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Walking the Dog Fast in Practice: Algorithm Engineering of the Fréchet Distance (1901.01504v1)

Published 6 Jan 2019 in cs.CG

Abstract: The Fr\'echet distance provides a natural and intuitive measure for the popular task of computing the similarity of two (polygonal) curves. While a simple algorithm computes it in near-quadratic time, a strongly subquadratic algorithm cannot exist unless the Strong Exponential Time Hypothesis fails. Still, fast practical implementations of the Fr\'echet distance, in particular for realistic input curves, are highly desirable. This has even lead to a designated competition, the ACM SIGSPATIAL GIS Cup 2017: Here, the challenge was to implement a near-neighbor data structure under the Fr\'echet distance. The bottleneck of the top three implementations turned out to be precisely the decision procedure for the Fr\'echet distance. In this work, we present a fast, certifying implementation for deciding the Fr\'echet distance, in order to (1) complement its pessimistic worst-case hardness by an empirical analysis on realistic input data and to (2) improve the state of the art for the GIS Cup challenge. We experimentally evaluate our implementation on a large benchmark consisting of several data sets (including handwritten characters and GPS trajectories). Compared to the winning implementation of the GIS Cup, we obtain running time improvements of up to more than two orders of magnitude for the decision procedure and of up to a factor of 30 for queries to the near-neighbor data structure.

Citations (20)

Summary

We haven't generated a summary for this paper yet.