Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Two Sets of Simple Formulae to Estimating Fractal Dimension of Irregular Boundaries (1901.01413v4)

Published 5 Jan 2019 in physics.soc-ph

Abstract: Irregular boundary lines can be characterized by fractal dimension, which provides important information for spatial analysis of complex geographical phenomena such as cities. However, it is difficult to calculate fractal dimension of boundaries systematically when image data is limited. An approximation estimation formulae of boundary dimension based on square is widely applied in urban and ecological studies. However, the boundary dimension is sometimes overestimated. This paper is devoted to developing a series of practicable formulae for boundary dimension estimation using ideas from fractals. A number of regular figures are employed as reference shapes, from which the corresponding geometric measure relations are constructed; from these measure relations, two sets of fractal dimension estimation formulae are derived for describing fractal-like boundaries. Correspondingly, a group of shape indexes can be defined. A finding is that different formulae have different merits and spheres of application, and the second set of boundary dimensions is a function of the shape indexes. Under condition of data shortage, these formulae can be utilized to estimate boundary dimension values rapidly. Moreover, the relationships between boundary dimension and shape indexes are instructive to understand the association and differences between characteristic scales and scaling. The formulae may be useful for the pre-fractal studies in geography, geomorphology, ecology, landscape science, and especially, urban science.

Summary

We haven't generated a summary for this paper yet.