Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Wonderful asymptotics of matrix coefficient D-modules (1901.01226v2)

Published 4 Jan 2019 in math.RT

Abstract: Beilinson-Bernstein localization realizes representations of complex reductive Lie algebras as monodromic $D$-modules on the "basic affine space" $G/N$, a torus bundle over the flag variety. A doubled version of the same space appears as the horocycle space describing the geometry of the reductive group $G$ at infinity, near the closed stratum of the wonderful compactification $\overline{G}$, or equivalently in the special fiber of the Vinberg semigroup of $G$. We show that Beilinson-Bernstein localization for $U\mathfrak g$-bimodules arises naturally as the specialization at infinity in $\overline{G}$ of the $D$-modules on $G$ describing matrix coefficients of Lie algebra representations. More generally, the asymptotics of matrix coefficient $D$-modules along any stratum of $\overline{G}$ are given by the matrix coefficient $D$-modules for parabolic restrictions. This provides a simple algebraic derivation of the relation between growth of matrix coefficients of admissible representations and $\mathfrak n$-homology. The result is an elementary consequence of the compatibility of localization with the degeneration of affine $G$-varieties to their asymptotic cones; analogous results hold for the asymptotics of the equations describing spherical functions on symmetric spaces.

Summary

We haven't generated a summary for this paper yet.