Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Pseudo-Implicit Feedback for Alleviating Data Sparsity in Top-K Recommendation (1901.00597v1)

Published 3 Jan 2019 in cs.IR and cs.SI

Abstract: We propose PsiRec, a novel user preference propagation recommender that incorporates pseudo-implicit feedback for enriching the original sparse implicit feedback dataset. Three of the unique characteristics of PsiRec are: (i) it views user-item interactions as a bipartite graph and models pseudo-implicit feedback from this perspective; (ii) its random walks-based approach extracts graph structure information from this bipartite graph, toward estimating pseudo-implicit feedback; and (iii) it adopts a Skip-gram inspired measure of confidence in pseudo-implicit feedback that captures the pointwise mutual information between users and items. This pseudo-implicit feedback is ultimately incorporated into a new latent factor model to estimate user preference in cases of extreme sparsity. PsiRec results in improvements of 21.5% and 22.7% in terms of Precision@10 and Recall@10 over state-of-the-art Collaborative Denoising Auto-Encoders. Our implementation is available at https://github.com/heyunh2015/PsiRecICDM2018.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com