Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Prediction of multi-dimensional spatial variation data via Bayesian tensor completion (1901.00578v1)

Published 3 Jan 2019 in cs.LG, math.ST, stat.CO, stat.ML, and stat.TH

Abstract: This paper presents a multi-dimensional computational method to predict the spatial variation data inside and across multiple dies of a wafer. This technique is based on tensor computation. A tensor is a high-dimensional generalization of a matrix or a vector. By exploiting the hidden low-rank property of a high-dimensional data array, the large amount of unknown variation testing data may be predicted from a few random measurement samples. The tensor rank, which decides the complexity of a tensor representation, is decided by an available variational Bayesian approach. Our approach is validated by a practical chip testing data set, and it can be easily generalized to characterize the process variations of multiple wafers. Our approach is more efficient than the previous virtual probe techniques in terms of memory and computational cost when handling high-dimensional chip testing data.

Citations (8)

Summary

We haven't generated a summary for this paper yet.