Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Simple Algorithm for Scalable Monte Carlo Inference (1901.00533v4)

Published 2 Jan 2019 in stat.CO, math-ph, math.MP, and stat.ML

Abstract: The methods of statistical physics are widely used for modelling complex networks. Building on the recently proposed Equilibrium Expectation approach, we derive a simple and efficient algorithm for maximum likelihood estimation (MLE) of parameters of exponential family distributions - a family of statistical models, that includes Ising model, Markov Random Field and Exponential Random Graph models. Computational experiments and analysis of empirical data demonstrate that the algorithm increases by orders of magnitude the size of network data amenable to Monte Carlo based inference. We report results suggesting that the applicability of the algorithm may readily be extended to the analysis of large samples of dependent observations commonly found in biology, sociology, astrophysics, and ecology.

Citations (9)

Summary

We haven't generated a summary for this paper yet.