Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Symmetric pairs for Nichols algebras of diagonal type via star products (1901.00490v1)

Published 2 Jan 2019 in math.QA and math.RT

Abstract: We construct symmetric pairs for Drinfeld doubles of pre-Nichols algebras of diagonal type and determine when they possess an Iwasawa decomposition. This extends G. Letzter's theory of quantum symmetric pairs. Our results can be uniformly applied to Kac-Moody quantum groups for a generic quantum parameter, for roots of unity in respect to both big and small quantum groups, to quantum supergroups and to exotic quantum groups of ufo type. We give a second construction of symmetric pairs for Heisenberg doubles in the above generality and prove that they always admit an Iwasawa decomposition. For symmetric pair coideal subalgebras with Iwasawa decomposition in the above generality we then address two problems which are fundamental already in the setting of quantum groups. Firstly, we show that the symmetric pair coideal subalgebras are isomorphic to intrinsically defined deformations of partial bosonizations of the corresponding pre-Nichols algebras. To this end we develop a general notion of star products on N-graded connected algebras which provides an efficient tool to prove that two deformations of the partial bosonization are isomorphic. The new perspective also provides an effective algorithm for determining the defining relations of the coideal subalgebras. Secondly, for Nichols algebras of diagonal type, we use the linear isomorphism between the coideal subalgebra and the partial bosonization to give an explicit construction of quasi K-matrices as sums over dual bases. We show that the resulting quasi K-matrices give rise to weakly universal K-matrices in the above generality.

Summary

We haven't generated a summary for this paper yet.