Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optical Fringe Patterns Filtering Based on Multi-Stage Convolution Neural Network (1901.00361v3)

Published 2 Jan 2019 in cs.CV

Abstract: Optical fringe patterns are often contaminated by speckle noise, making it difficult to accurately and robustly extract their phase fields. To deal with this problem, we propose a filtering method based on deep learning, called optical fringe patterns denoising convolutional neural network (FPD-CNN), for directly removing speckle from the input noisy fringe patterns. Regularization technology is integrated into the design of deep architecture. Specifically, the FPD-CNN method is divided into multiple stages, each stage consists of a set of convolutional layers along with batch normalization and leaky rectified linear unit (Leaky ReLU) activation function. The end-to-end joint training is carried out using the Euclidean loss. Extensive experiments on simulated and experimental optical fringe patterns,especially finer ones with high-density regions, show that the proposed method is competitive with some state-of-the-art denoising techniques in spatial or transform domains, efficiently preserving main features of fringe at a fairly fast speed.

Citations (44)

Summary

We haven't generated a summary for this paper yet.