Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the superconvergence of a hydridizable discontinuous Galerkin method for the Cahn-Hilliard equation (1901.00079v2)

Published 1 Jan 2019 in math.NA and cs.NA

Abstract: We propose a hydridizable discontinuous Galerkin (HDG) method for solving the Cahn-Hilliard equation. The temporal discretization can be based on either the backward Euler method or the convex-splitting method. We show that the fully discrete scheme admits a unique solution, and we establish optimal convergence rates for all variables in the $L2$ norm for arbitrary polynomial orders. In terms of the globally coupled degrees of freedom, the scalar variables are superconvergent. Another theoretical contribution of this work is a novel HDG Sobolev inequality that is useful for HDG error analysis of nonlinear problems. Numerical results are reported to confirm the theoretical convergence rates.

Summary

We haven't generated a summary for this paper yet.