Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Some remarks on invariant Poisson quasi-Nijenhuis structures on Lie groups (1812.11970v1)

Published 27 Dec 2018 in math-ph and math.MP

Abstract: We study {\em right-invariant (resp., left-invariant) Poisson quasi-Nijenhuis structures} on a Lie group $G$ and introduce their infinitesimal counterpart, the so-called {\em r-qn structures} on the corresponding Lie algebra $\mathfrak g$. We investigate the procedure of the classification of such structures on the Lie algebras and then for clarity of our results we classify, up to a natural equivalence, all $r$-$qn$ structures on two types of four-dimensional real Lie algebras. We mention some remarks on the relation between $r$-$qn$ structures and the generalized complex structures on the Lie algebras $\mathfrak g$ and also the solutions of modified Yang-Baxter equation on the double of Lie bialgebra $\mathfrak g\oplus\mathfrak g*$. The results are applied to some relevant examples.

Summary

We haven't generated a summary for this paper yet.