Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hamiltonian Systems with Lévy Noise: Symplecticity, Hamilton's Principle and Averaging Principle (1812.11395v3)

Published 29 Dec 2018 in math.DS

Abstract: This work focuses on topics related to Hamiltonian stochastic differential equations with L\'{e}vy noise. We first show that the phase flow of the stochastic system preserves symplectic structure, and propose a stochastic version of Hamilton's principle by the corresponding formulation of the stochastic action integral and the Euler-Lagrange equation. Based on these properties, we further investigate the effective behaviour of a small transversal perturbation to a completely integrable stochastic Hamiltonian system with L\'{e}vy noise. We establish an averaging principle in the sense that the action component of solution converges to the solution of a stochastic differential equation when the scale parameter goes to zero. Furthermore, we obtain the estimation for the rate of this convergence. Finally, we present an example to illustrate these results.

Summary

We haven't generated a summary for this paper yet.