Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sampling Using Neural Networks for colorizing the grayscale images (1812.10650v1)

Published 27 Dec 2018 in cs.GR, cs.LG, and stat.ML

Abstract: The main idea of this paper is to explore the possibilities of generating samples from the neural networks, mostly focusing on the colorization of the grey-scale images. I will compare the existing methods for colorization and explore the possibilities of using new generative modeling to the task of colorization. The contributions of this paper are to compare the existing structures with similar generating structures(Decoders) and to apply the novel structures including Conditional VAE(CVAE), Conditional Wasserstein GAN with Gradient Penalty(CWGAN-GP), CWGAN-GP with L1 reconstruction loss, Adversarial Generative Encoders(AGE) and Introspective VAE(IVAE). I trained these models using CIFAR-10 images. To measure the performance, I use Inception Score(IS) which measures how distinctive each image is and how diverse overall samples are as well as human eyes for CIFAR-10 images. It turns out that CVAE with L1 reconstruction loss and IVAE achieve the highest score in IS. CWGAN-GP with L1 tends to learn faster than CWGAN-GP, but IS does not increase from CWGAN-GP. CWGAN-GP tends to generate more diverse images than other models using reconstruction loss. Also, I figured out that the proper regularization plays a vital role in generative modeling.

Citations (1)

Summary

We haven't generated a summary for this paper yet.