Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Double Neural Counterfactual Regret Minimization (1812.10607v1)

Published 27 Dec 2018 in cs.AI

Abstract: Counterfactual Regret Minimization (CRF) is a fundamental and effective technique for solving Imperfect Information Games (IIG). However, the original CRF algorithm only works for discrete state and action spaces, and the resulting strategy is maintained as a tabular representation. Such tabular representation limits the method from being directly applied to large games and continuing to improve from a poor strategy profile. In this paper, we propose a double neural representation for the imperfect information games, where one neural network represents the cumulative regret, and the other represents the average strategy. Furthermore, we adopt the counterfactual regret minimization algorithm to optimize this double neural representation. To make neural learning efficient, we also developed several novel techniques including a robust sampling method, mini-batch Monte Carlo Counterfactual Regret Minimization (MCCFR) and Monte Carlo Counterfactual Regret Minimization Plus (MCCFR+) which may be of independent interests. Experimentally, we demonstrate that the proposed double neural algorithm converges significantly better than the reinforcement learning counterpart.

Citations (51)

Summary

We haven't generated a summary for this paper yet.