Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Prophet Inequality Can Be Solved Optimally with a Single Set of Samples (1812.10563v1)

Published 26 Dec 2018 in cs.DS and cs.GT

Abstract: The setting of the classic prophet inequality is as follows: a gambler is shown the probability distributions of $n$ independent, non-negative random variables with finite expectations. In their indexed order, a value is drawn from each distribution, and after every draw the gambler may choose to accept the value and end the game, or discard the value permanently and continue the game. What is the best performance that the gambler can achieve in comparison to a prophet who can always choose the highest value? Krengel, Sucheston, and Garling solved this problem in 1978, showing that there exists a strategy for which the gambler can achieve half as much reward as the prophet in expectation. Furthermore, this result is tight. In this work, we consider a setting in which the gambler is allowed much less information. Suppose that the gambler can only take one sample from each of the distributions before playing the game, instead of knowing the full distributions. We provide a simple and intuitive algorithm that recovers the original approximation of $\frac{1}{2}$. Our algorithm works against even an almighty adversary who always chooses a worst-case ordering, rather than the standard offline adversary. The result also has implications for mechanism design -- there is much interest in designing competitive auctions with a finite number of samples from value distributions rather than full distributional knowledge.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Jack Wang (8 papers)
Citations (8)

Summary

We haven't generated a summary for this paper yet.