Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Early Prediction of Post-acute Care Discharge Disposition Using Predictive Analytics: Preponing Prior Health Insurance Authorization Thus Reducing the Inpatient Length of Stay (1812.10487v1)

Published 28 Dec 2018 in cs.CY and cs.AI

Abstract: Objective: A patient medical insurance coverage plays an essential role in determining the post-acute care (PAC) discharge disposition. The prior health insurance authorization process postpones the PAC discharge disposition, increases the inpatient length of stay, and effects patient health. Our study implements predictive analytics for the early prediction of the PAC discharge disposition to reduce the deferments caused by prior health insurance authorization, the inpatient length of stay and inpatient stay expenses. Methodology: We conducted a group discussion involving 25 patient care facilitators (PCFs) and two registered nurses (RNs) and retrieved 1600 patient data records from the initial nursing assessment and discharge notes to conduct a retrospective analysis of PAC discharge dispositions using predictive analytics. Results: The chi-squared automatic interaction detector (CHAID) algorithm enabled the early prediction of the PAC discharge disposition, accelerated the prior health insurance process, decreased the inpatient length of stay by an average of 22.22%, and reduced inpatient stay expenses by \$1,974 for state government hospitals, \$2,346 for non-profit hospitals and \$1,798 for for-profit hospitals per day. The CHAID algorithm produced an overall accuracy of 84.16% and an area under the receiver operating characteristic (ROC) curve value of 0.81. Conclusion: The early prediction of PAC discharge dispositions can condense the PAC deferment caused by the prior health insurance authorization process and simultaneously minimize the inpatient length of stay and related expenses incurred by the hospital.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Avishek Choudhury (16 papers)

Summary

We haven't generated a summary for this paper yet.