Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multifaceted nonlinear dynamics in $\mathcal{PT}$-symmetric coupled Liénard oscillators (1812.10126v3)

Published 25 Dec 2018 in nlin.CD

Abstract: We propose a generalized parity-time ($\mathcal{PT}$) -symmetric Li\'enard oscillator with two different orders of nonlinear position-dependent dissipation. We study the stability of the stationary states by using the eigenvalues of Jacobian and evaluate the stability threshold thereafter. In the first order nonlinear damping model, we discover that the temporal evolution of both gain and lossy oscillators attains a complete convergence towards the stable stationary state leading to the emergence of oscillation and amplitude deaths. Also, the system displays a remarkable manifestation of transient chaos in the lossy oscillator while the gain counterpart exhibits blow-up dynamics for certain choice of initial conditions and control parameters. Employing an external driving force on the loss oscillator, we find that the blow-up dynamics can be controlled and a pure aperiodic state is achievable. On the other hand, the second order nonlinear damping model yields a completely different dynamics on contrary to the first order where the former reveals a conventional quasi-periodic route to chaos upon decreasing the natural frequency of both gain and loss oscillators. An electronic circuit scheme for the experimental realization of the proposed system has also been put forward.

Summary

We haven't generated a summary for this paper yet.