Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Writer-Aware CNN for Parsimonious HMM-Based Offline Handwritten Chinese Text Recognition (1812.09809v2)

Published 24 Dec 2018 in cs.CV

Abstract: Recently, the hybrid convolutional neural network hidden Markov model (CNN-HMM) has been introduced for offline handwritten Chinese text recognition (HCTR) and has achieved state-of-the-art performance. However, modeling each of the large vocabulary of Chinese characters with a uniform and fixed number of hidden states requires high memory and computational costs and makes the tens of thousands of HMM state classes confusing. Another key issue of CNN-HMM for HCTR is the diversified writing style, which leads to model strain and a significant performance decline for specific writers. To address these issues, we propose a writer-aware CNN based on parsimonious HMM (WCNN-PHMM). First, PHMM is designed using a data-driven state-tying algorithm to greatly reduce the total number of HMM states, which not only yields a compact CNN by state sharing of the same or similar radicals among different Chinese characters but also improves the recognition accuracy due to the more accurate modeling of tied states and the lower confusion among them. Second, WCNN integrates each convolutional layer with one adaptive layer fed by a writer-dependent vector, namely, the writer code, to extract the irrelevant variability in writer information to improve recognition performance. The parameters of writer-adaptive layers are jointly optimized with other network parameters in the training stage, while a multiple-pass decoding strategy is adopted to learn the writer code and generate recognition results. Validated on the ICDAR 2013 competition of CASIA-HWDB database, the more compact WCNN-PHMM of a 7360-class vocabulary can achieve a relative character error rate (CER) reduction of 16.6% over the conventional CNN-HMM without considering LLMing. By adopting a powerful hybrid LLM (N-gram LLM and recurrent neural network LLM), the CER of WCNN-PHMM is reduced to 3.17%.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Zi-Rui Wang (8 papers)
  2. Jun Du (130 papers)
  3. Jia-Ming Wang (8 papers)
Citations (51)

Summary

We haven't generated a summary for this paper yet.