Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning finite-dimensional coding schemes with nonlinear reconstruction maps (1812.09658v2)

Published 23 Dec 2018 in stat.ML and cs.LG

Abstract: This paper generalizes the Maurer--Pontil framework of finite-dimensional lossy coding schemes to the setting where a high-dimensional random vector is mapped to an element of a compact set of latent representations in a lower-dimensional Euclidean space, and the reconstruction map belongs to a given class of nonlinear maps. Under this setup, which encompasses a broad class of unsupervised representation learning problems, we establish a connection to approximate generative modeling under structural constraints using the tools from the theory of optimal transportation. Next, we consider problem of learning a coding scheme on the basis of a finite collection of training samples and present generalization bounds that hold with high probability. We then illustrate the general theory in the setting where the reconstruction maps are implemented by deep neural nets.

Citations (9)

Summary

We haven't generated a summary for this paper yet.