Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Inference and Sampling of $K_{33}$-free Ising Models (1812.09587v2)

Published 22 Dec 2018 in stat.CO, cond-mat.stat-mech, cs.LG, and stat.ML

Abstract: We call an Ising model tractable when it is possible to compute its partition function value (statistical inference) in polynomial time. The tractability also implies an ability to sample configurations of this model in polynomial time. The notion of tractability extends the basic case of planar zero-field Ising models. Our starting point is to describe algorithms for the basic case computing partition function and sampling efficiently. To derive the algorithms, we use an equivalent linear transition to perfect matching counting and sampling on an expanded dual graph. Then, we extend our tractable inference and sampling algorithms to models, whose triconnected components are either planar or graphs of $O(1)$ size. In particular, it results in a polynomial-time inference and sampling algorithms for $K_{33}$ (minor) free topologies of zero-field Ising models - a generalization of planar graphs with a potentially unbounded genus.

Citations (4)

Summary

We haven't generated a summary for this paper yet.