Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Age-optimal Sampling and Transmission Scheduling in Multi-Source Systems (1812.09463v3)

Published 22 Dec 2018 in cs.IT and math.IT

Abstract: In this paper, we consider the problem of minimizing the age of information in a multi-source system, where samples are taken from multiple sources and sent to a destination via a channel with random delay. Due to interference, only one source can be scheduled at a time. We consider the problem of finding a decision policy that determines the sampling times and transmission order of the sources for minimizing the total average peak age (TaPA) and the total average age (TaA) of the sources. Our investigation of this problem results in an important separation principle: The optimal scheduling strategy and the optimal sampling strategy are independent of each other. In particular, we prove that, for any given sampling strategy, the Maximum Age First (MAF) scheduling strategy provides the best age performance among all scheduling strategies. This transforms our overall optimization problem into an optimal sampling problem, given that the decision policy follows the MAF scheduling strategy. While the zero-wait sampling strategy (in which a sample is generated once the channel becomes idle) is shown to be optimal for minimizing the TaPA, it does not always minimize the TaA. We use Dynamic Programming (DP) to investigate the optimal sampling problem for minimizing the TaA. Finally, we provide an approximate analysis of BeLLMan's equation to approximate the TaA-optimal sampling strategy by a water-filling solution which is shown to be very close to optimal through numerical evaluations.

Citations (74)

Summary

We haven't generated a summary for this paper yet.