Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Marginal and Conditional Multiple Inference for Linear Mixed Model Predictors (1812.09250v6)

Published 21 Dec 2018 in math.ST and stat.TH

Abstract: In spite of its high practical relevance, cluster specific multiple inference for linear mixed model predictors has hardly been addressed so far. While marginal inference for population parameters is well understood, conditional inference for the cluster specific predictors is more intricate. This work introduces a general framework for multiple inference in linear mixed models for cluster specific predictors. Consistent confidence sets for multiple inference are constructed under both, the marginal and the conditional law. Furthermore, it is shown that, remarkably, corresponding multiple marginal confidence sets are also asymptotically valid for conditional inference. Those lend themselves for testing linear hypotheses using standard quantiles without the need of re-sampling techniques. All findings are validated in simulations and illustrated along a study on Covid-19 mortality in US state prisons.

Summary

We haven't generated a summary for this paper yet.