Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Limits on the Universal Method for Matrix Multiplication (1812.08731v2)

Published 20 Dec 2018 in cs.CC, cs.DS, and math.CO

Abstract: In this work, we prove limitations on the known methods for designing matrix multiplication algorithms. Alman and Vassilevska Williams recently defined the Universal Method, which substantially generalizes all the known approaches including Strassen's Laser Method and Cohn and Umans' Group Theoretic Method. We prove concrete lower bounds on the algorithms one can design by applying the Universal Method to many different tensors. Our proofs use new tools for upper bounding the asymptotic slice rank of a wide range of tensors. Our main result is that the Universal method applied to any Coppersmith-Winograd tensor $CW_q$ cannot yield a bound on $\omega$, the exponent of matrix multiplication, better than $2.16805$. By comparison, it was previously only known that the weaker `Galactic Method' applied to $CW_q$ could not achieve an exponent of $2$. We also study the Laser Method (which is, in principle, a highly special case of the Universal Method) and prove that it is "complete" for matrix multiplication algorithms: when it applies to a tensor $T$, it achieves $\omega = 2$ if and only if it is possible for the Universal method applied to $T$ to achieve $\omega = 2$. Hence, the Laser Method, which was originally used as an algorithmic tool, can also be seen as a lower bounding tool. For example, in their landmark paper, Coppersmith and Winograd achieved a bound of $\omega \leq 2.376$, by applying the Laser Method to $CW_q$. By our result, the fact that they did not achieve $\omega=2$ implies a lower bound on the Universal Method applied to $CW_q$. Indeed, if it were possible for the Universal Method applied to $CW_q$ to achieve $\omega=2$, then Coppersmith and Winograd's application of the Laser Method would have achieved $\omega=2$.

Citations (44)

Summary

We haven't generated a summary for this paper yet.