Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Andrews' integer partitions with even parts below odd parts (1812.08702v2)

Published 20 Dec 2018 in math.NT

Abstract: Recently, Andrews defined a partition function $\mathcal{EO}(n)$ which counts the number of partitions of $n$ in which every even part is less than each odd part. He also defined a partition function $\overline{\mathcal{EO}}(n)$ which counts the number of partitions of $n$ enumerated by $\mathcal{EO}(n)$ in which only the largest even part appears an odd number of times. Andrews proposed to undertake a more extensive investigation of the properties of $\overline{\mathcal{EO}}(n)$. In this article, we prove infinite families of congruences for $\overline{\mathcal{EO}}(n)$. We next study parity properties of $\overline{\mathcal{EO}}(n)$. We prove that there are infinitely many integers $N$ in every arithmetic progression for which $\overline{\mathcal{EO}}(N)$ is even; and that there are infinitely many integers $M$ in every arithmetic progression for which $\overline{\mathcal{EO}}(M)$ is odd so long as there is at least one. Very recently, Uncu has treated a different subset of the partitions enumerated by $\mathcal{EO}(n)$. We prove that Uncu's partition function is divisible by $2k$ for almost all $k$. We use arithmetic properties of modular forms and Hecke eigenforms to prove our results.

Summary

We haven't generated a summary for this paper yet.