Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the positivity and magnitudes of Bayesian quadrature weights (1812.08509v2)

Published 20 Dec 2018 in math.ST, cs.NA, math.NA, and stat.TH

Abstract: This article reviews and studies the properties of Bayesian quadrature weights, which strongly affect stability and robustness of the quadrature rule. Specifically, we investigate conditions that are needed to guarantee that the weights are positive or to bound their magnitudes. First, it is shown that the weights are positive in the univariate case if the design points locally minimise the posterior integral variance and the covariance kernel is totally positive (e.g., Gaussian and Hardy kernels). This suggests that gradient-based optimisation of design points may be effective in constructing stable and robust Bayesian quadrature rules. Secondly, we show that magnitudes of the weights admit an upper bound in terms of the fill distance and separation radius if the RKHS of the kernel is a Sobolev space (e.g., Mat\'ern kernels), suggesting that quasi-uniform points should be used. A number of numerical examples demonstrate that significant generalisations and improvements appear to be possible, manifesting the need for further research.

Citations (12)

Summary

We haven't generated a summary for this paper yet.