Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Gated Recurrent and Convolutional Network Hybrid Model for Univariate Time Series Classification (1812.07683v3)

Published 18 Dec 2018 in cs.LG and stat.ML

Abstract: Hybrid LSTM-fully convolutional networks (LSTM-FCN) for time series classification have produced state-of-the-art classification results on univariate time series. We show that replacing the LSTM with a gated recurrent unit (GRU) to create a GRU-fully convolutional network hybrid model (GRU-FCN) can offer even better performance on many time series datasets. The proposed GRU-FCN model outperforms state-of-the-art classification performance in many univariate and multivariate time series datasets. In addition, since the GRU uses a simpler architecture than the LSTM, it has fewer training parameters, less training time, and a simpler hardware implementation, compared to the LSTM-based models.

Citations (61)

Summary

We haven't generated a summary for this paper yet.