Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Automatic Alignment of Sequential Monte Carlo Inference in Higher-Order Probabilistic Programs (1812.07439v1)

Published 18 Dec 2018 in cs.PL

Abstract: Probabilistic programming is a programming paradigm for expressing flexible probabilistic models. Implementations of probabilistic programming languages employ a variety of inference algorithms, where sequential Monte Carlo methods are commonly used. A problem with current state-of-the-art implementations using sequential Monte Carlo inference is the alignment of program synchronization points. We propose a new static analysis approach based on the 0-CFA algorithm for automatically aligning higher-order probabilistic programs. We evaluate the automatic alignment on a phylogenetic model, showing a significant decrease in runtime and increase in accuracy.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com