Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

D{é}tection de locuteurs dans les s{é}ries TV (1812.07200v1)

Published 18 Dec 2018 in cs.MM and cs.CL

Abstract: Speaker diarization of audio streams turns out to be particularly challenging when applied to fictional films, where many characters talk in various acoustic conditions (background music, sound effects, variations in intonation...). Despite this acoustic variability, such movies exhibit specific visual patterns, particularly within dialogue scenes. In this paper, we introduce a two-step method to achieve speaker diarization in TV series: speaker diarization is first performed locally within scenes visually identified as dialogues; then, the hypothesized local speakers are compared to each other during a second clustering process in order to detect recurring speakers: this second stage of clustering is subject to the constraint that the different speakers involved in the same dialogue have to be assigned to different clusters. The performances of our approach are compared to those obtained by standard speaker diarization tools applied to the same data.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Xavier Bost (15 papers)
  2. Georges Linares (25 papers)

Summary

We haven't generated a summary for this paper yet.