Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Gaussian Process Mixtures for Estimating Heterogeneous Treatment Effects (1812.07153v1)

Published 18 Dec 2018 in stat.ME and stat.OT

Abstract: We develop a Gaussian-process mixture model for heterogeneous treatment effect estimation that leverages the use of transformed outcomes. The approach we will present attempts to improve point estimation and uncertainty quantification relative to past work that has used transformed variable related methods as well as traditional outcome modeling. Earlier work on modeling treatment effect heterogeneity using transformed outcomes has relied on tree based methods such as single regression trees and random forests. Under the umbrella of non-parametric models, outcome modeling has been performed using Bayesian additive regression trees and various flavors of weighted single trees. These approaches work well when large samples are available, but suffer in smaller samples where results are more sensitive to model misspecification - our method attempts to garner improvements in inference quality via a correctly specified model rooted in Bayesian non-parametrics. Furthermore, while we begin with a model that assumes that the treatment assignment mechanism is known, an extension where it is learnt from the data is presented for applications to observational studies. Our approach is applied to simulated and real data to demonstrate our theorized improvements in inference with respect to two causal estimands: the conditional average treatment effect and the average treatment effect. By leveraging our correctly specified model, we are able to more accurately estimate the treatment effects while reducing their variance.

Summary

We haven't generated a summary for this paper yet.