Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Winter Road Surface Condition Recognition Using A Pretrained Deep Convolutional Network (1812.06858v1)

Published 17 Dec 2018 in eess.IV and cs.CV

Abstract: This paper investigates the application of the latest machine learning technique deep neural networks for classifying road surface conditions (RSC) based on images from smartphones. Traditional machine learning techniques such as support vector machine (SVM) and random forests (RF) have been attempted in literature; however, their classification performance has been less than desirable due to challenges associated with image noises caused by sunlight glare and residual salts. A deep learning model based on convolutional neural network (CNN) is proposed and evaluated for its potential to address these challenges for improved classification accuracy. In the proposed approach we introduce the idea of applying an existing CNN model that has been pre-trained using millions of images with proven high recognition accuracy. The model is extended with two additional fully-connected layers of neurons for learning the specific features of the RSC images. The whole model is then trained with a low learning rate for fine-tuning by using a small set of RSC images. Results show that the proposed model has the highest classification performance in comparison to the traditional machine learning techniques. The testing accuracy with different training dataset sizes is also analyzed, showing the potential of achieving much higher accuracy with a larger training dataset.

Citations (14)

Summary

We haven't generated a summary for this paper yet.