Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Computing the Hausdorff Distance of Two Sets from Their Signed Distance Functions (1812.06740v1)

Published 17 Dec 2018 in math.MG and cs.CG

Abstract: The Hausdorff distance is a measure of (dis-)similarity between two sets which is widely used in various applications. Most of the applied literature is devoted to the computation for sets consisting of a finite number of points. This has applications, for instance, in image processing. However, we would like to apply the Hausdorff distance to control and evaluate optimisation methods in level-set based shape optimisation. In this context, the involved sets are not finite point sets but characterised by level-set or signed distance functions. This paper discusses the computation of the Hausdorff distance between two such sets. We recall fundamental properties of the Hausdorff distance, including a characterisation in terms of distance functions. In numerical applications, this result gives at least an exact lower bound on the Hausdorff distance. We also derive an upper bound, and consequently a precise error estimate. By giving an example, we show that our error estimate cannot be further improved for a general situation. On the other hand, we also show that much better accuracy can be expected for non-pathological situations that are more likely to occur in practice. The resulting error estimate can be improved even further if one assumes that the grid is rotated randomly with respect to the involved sets.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Daniel Kraft (4 papers)
Citations (8)

Summary

We haven't generated a summary for this paper yet.