Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Semi-supervised mp-MRI Data Synthesis with StitchLayer and Auxiliary Distance Maximization (1812.06625v1)

Published 17 Dec 2018 in cs.LG, cs.CV, and stat.ML

Abstract: In this paper, we address the problem of synthesizing multi-parameter magnetic resonance imaging (mp-MRI) data, i.e. Apparent Diffusion Coefficients (ADC) and T2-weighted (T2w), containing clinically significant (CS) prostate cancer (PCa) via semi-supervised adversarial learning. Specifically, our synthesizer generates mp-MRI data in a sequential manner: first generating ADC maps from 128-d latent vectors, followed by translating them to the T2w images. The synthesizer is trained in a semisupervised manner. In the supervised training process, a limited amount of paired ADC-T2w images and the corresponding ADC encodings are provided and the synthesizer learns the paired relationship by explicitly minimizing the reconstruction losses between synthetic and real images. To avoid overfitting limited ADC encodings, an unlimited amount of random latent vectors and unpaired ADC-T2w Images are utilized in the unsupervised training process for learning the marginal image distributions of real images. To improve the robustness of synthesizing, we decompose the difficult task of generating full-size images into several simpler tasks which generate sub-images only. A StitchLayer is then employed to fuse sub-images together in an interlaced manner into a full-size image. To enforce the synthetic images to indeed contain distinguishable CS PCa lesions, we propose to also maximize an auxiliary distance of Jensen-Shannon divergence (JSD) between CS and nonCS images. Experimental results show that our method can effectively synthesize a large variety of mpMRI images which contain meaningful CS PCa lesions, display a good visual quality and have the correct paired relationship. Compared to the state-of-the-art synthesis methods, our method achieves a significant improvement in terms of both visual and quantitative evaluation metrics.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Zhiwei Wang (223 papers)
  2. Yi Lin (103 papers)
  3. Kwang-Ting Cheng (96 papers)
  4. Xin Yang (314 papers)
Citations (26)

Summary

We haven't generated a summary for this paper yet.