Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Voiceprint recognition of Parkinson patients based on deep learning (1812.06613v1)

Published 17 Dec 2018 in cs.SD, cs.CV, cs.LG, and eess.AS

Abstract: More than 90% of the Parkinson Disease (PD) patients suffer from vocal disorders. Speech impairment is already indicator of PD. This study focuses on PD diagnosis through voiceprint features. In this paper, a method based on Deep Neural Network (DNN) recognition and classification combined with Mini-Batch Gradient Descent (MBGD) is proposed to distinguish PD patients from healthy people using voiceprint features. In order to exact the voiceprint features from patients, Weighted Mel Frequency Cepstrum Coefficients (WMFCC) is applied. The proposed method is tested on experimental data obtained by the voice recordings of three sustained vowels /a/, /o/ and /u/ from participants (48 PD and 20 healthy people). The results show that the proposed method achieves a high accuracy of diagnosis of PD patients from healthy people, than the conventional methods like Support Vector Machine (SVM) and other mentioned in this paper. The accuracy achieved is 89.5%. WMFCC approach can solve the problem that the high-order cepstrum coefficients are small and the features component's representation ability to the audio is weak. MBGD reduces the computational loads of the loss function, and increases the training speed of the system. DNN classifier enhances the classification ability of voiceprint features. Therefore, the above approaches can provide a solid solution for the quick auxiliary diagnosis of PD in early stage.

Citations (10)

Summary

We haven't generated a summary for this paper yet.