Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Graph classes and forbidden patterns on three vertices (1812.05913v3)

Published 14 Dec 2018 in cs.DS, cs.DM, and math.CO

Abstract: This paper deals with graph classes characterization and recognition. A popular way to characterize a graph class is to list a minimal set of forbidden induced subgraphs. Unfortunately this strategy usually does not lead to an efficient recognition algorithm. On the other hand, many graph classes can be efficiently recognized by techniques based on some interesting orderings of the nodes, such as the ones given by traversals. We study specifically graph classes that have an ordering avoiding some ordered structures. More precisely, we consider what we call patterns on three nodes, and the recognition complexity of the associated classes. In this domain, there are two key previous works. Damashke started the study of the classes defined by forbidden patterns, a set that contains interval, chordal and bipartite graphs among others. On the algorithmic side, Hell, Mohar and Rafiey proved that any class defined by a set of forbidden patterns can be recognized in polynomial time. We improve on these two works, by characterizing systematically all the classes defined sets of forbidden patterns (on three nodes), and proving that among the 23 different classes (up to complementation) that we find, 21 can actually be recognized in linear time. Beyond this result, we consider that this type of characterization is very useful, leads to a rich structure of classes, and generates a lot of open questions worth investigating.

Citations (15)

Summary

We haven't generated a summary for this paper yet.