Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Guaranteed satisficing and finite regret: Analysis of a cognitive satisficing value function (1812.05795v2)

Published 14 Dec 2018 in cs.AI

Abstract: As reinforcement learning algorithms are being applied to increasingly complicated and realistic tasks, it is becoming increasingly difficult to solve such problems within a practical time frame. Hence, we focus on a \textit{satisficing} strategy that looks for an action whose value is above the aspiration level (analogous to the break-even point), rather than the optimal action. In this paper, we introduce a simple mathematical model called risk-sensitive satisficing ($RS$) that implements a satisficing strategy by integrating risk-averse and risk-prone attitudes under the greedy policy. We apply the proposed model to the $K$-armed bandit problems, which constitute the most basic class of reinforcement learning tasks, and prove two propositions. The first is that $RS$ is guaranteed to find an action whose value is above the aspiration level. The second is that the regret (expected loss) of $RS$ is upper bounded by a finite value, given that the aspiration level is set to an "optimal level" so that satisficing implies optimizing. We confirm the results through numerical simulations and compare the performance of $RS$ with that of other representative algorithms for the $K$-armed bandit problems.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Akihiro Tamatsukuri (1 paper)
  2. Tatsuji Takahashi (5 papers)
Citations (11)