Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Effectiveness of Hierarchical Softmax in Large Scale Classification Tasks (1812.05737v1)

Published 13 Dec 2018 in cs.LG and stat.ML

Abstract: Typically, Softmax is used in the final layer of a neural network to get a probability distribution for output classes. But the main problem with Softmax is that it is computationally expensive for large scale data sets with large number of possible outputs. To approximate class probability efficiently on such large scale data sets we can use Hierarchical Softmax. LSHTC datasets were used to study the performance of the Hierarchical Softmax. LSHTC datasets have large number of categories. In this paper we evaluate and report the performance of normal Softmax Vs Hierarchical Softmax on LSHTC datasets. This evaluation used macro f1 score as a performance measure. The observation was that the performance of Hierarchical Softmax degrades as the number of classes increase.

Citations (31)

Summary

We haven't generated a summary for this paper yet.