Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Lower Assouad Dimension of Measures and Regularity (1812.05573v2)

Published 13 Dec 2018 in math.MG, math.CA, and math.DS

Abstract: In analogy with the lower Assouad dimensions of a set, we study the lower Assouad dimensions of a measure. As with the upper Assouad dimensions, the lower Assouad dimensions of a measure provide information about the extreme local behaviour of the measure. We study the connection with other dimensions and with regularity properties. In particular, the quasi-lower Assouad dimension is dominated by the infimum of the measure's lower local dimensions. Although strict inequality is possible in general, equality holds for the class of self-similar measures of finite type. This class includes all self-similar, equicontractive measures satisfying the open set condition, as well as certain `overlapping' self-similar measures, such as Bernoulli convolutions with contraction factors that are inverses of Pisot numbers. We give lower bounds for the lower Assouad dimension for measures arising from a Moran construction, prove that self-affine measures are uniformly perfect and have positive lower Assouad dimension, prove that the Assouad spectrum of a measure converges to its quasi-Assouad dimension and show that coincidence of the upper and lower Assouad dimension of a measure does not imply that the measure is $s$-regular.

Summary

We haven't generated a summary for this paper yet.