Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Polynomial Time Algorithm for Maximum Likelihood Estimation of Multivariate Log-concave Densities (1812.05524v1)

Published 13 Dec 2018 in cs.DS

Abstract: We study the problem of computing the maximum likelihood estimator (MLE) of multivariate log-concave densities. Our main result is the first computationally efficient algorithm for this problem. In more detail, we give an algorithm that, on input a set of $n$ points in $\mathbb{R}d$ and an accuracy parameter $\epsilon>0$, it runs in time $\text{poly}(n, d, 1/\epsilon)$, and outputs a log-concave density that with high probability maximizes the log-likelihood up to an additive $\epsilon$. Our approach relies on a natural convex optimization formulation of the underlying problem that can be efficiently solved by a projected stochastic subgradient method. The main challenge lies in showing that a stochastic subgradient of our objective function can be efficiently approximated. To achieve this, we rely on structural results on approximation of log-concave densities and leverage classical algorithmic tools on volume approximation of convex bodies and uniform sampling from convex sets.

Citations (8)

Summary

We haven't generated a summary for this paper yet.