Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A likelihood-based approach for cure regression models (1812.05334v4)

Published 13 Dec 2018 in stat.ME

Abstract: We propose a new likelihood-based approach for estimation, inference and variable selection for parametric cure regression models in time-to-event analysis under random right-censoring. In this context, it often happens that some subjects are "cured", i.e., they will never experience the event of interest. Then, the sample of censored observations is an unlabeled mixture of cured and "susceptible" subjects. Using inverse probability censoring weighting (IPCW), we propose a likelihood-based estimation procedure for the cure regression model without making assumptions about the distribution of survival times for the susceptible subjects. The IPCW approach does require a preliminary estimate of the censoring distribution, for which general parametric, semi- or non-parametric approaches can be used. The incorporation of a penalty term in our estimation procedure is straightforward; in particular, we propose L1-type penalties for variable selection. Our theoretical results are derived under mild assumptions. Simulation experiments and real data analysis illustrate the effectiveness of the new approach.

Summary

We haven't generated a summary for this paper yet.