Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Traveling waves of a full parabolic attraction-repulsion chemotaxis systems with logistic sources (1812.04455v1)

Published 8 Dec 2018 in math.AP

Abstract: In this paper, we study traveling wave solutions of the chemotaxis systems \begin{equation} \begin{cases} u_{t}=\Delta u -\chi_1\nabla( u\nabla v_1)+\chi_2 \nabla(u\nabla v_2 )+ u(a -b u), \qquad \ x\in\mathbb{R} \ \tau\partial_tv_1=(\Delta- \lambda_1 I)v_1+ \mu_1 u, \qquad \ x\in\mathbb{R}, \ \tau\partial v_2=(\Delta- \lambda_2 I)v_2+ \mu_2 u, \qquad \ \ x\in\mathbb{R}, \end{cases} (0.1) \end{equation} where $\tau>0,\chi_{i}> 0,\lambda_i> 0,\ \mu_i>0$ ($i=1,2$) and $\ a>0,\ b> 0$ are constants, and $N$ is a positive integer. Under some appropriate conditions on the parameters, we show that there exist two positive constant $ 0<c{}(\tau,\chi_1,\mu_1,\lambda_1,\chi_2,\mu_2,\lambda_2)<c{*}(\tau,\chi_1,\mu_1,\lambda_1,\chi_2,\mu_2,\lambda_2)$ such that for every $c{*}(\tau,\chi_1,\mu_1,\lambda_1,\chi_2,\mu_2,\lambda_2)\leq c<c{**}(\tau,\chi_1,\mu_1,\lambda_1,\chi_2,\mu_2,\lambda_2)$, $(0.1)$ has a traveling wave solution $(u,v_1,v_2)(x,t)=(U,V_1,V_2)(x-ct)$ connecting $(\frac{a}{b},\frac{a\mu_1}{b\lambda_1},\frac{a\mu_2}{b\lambda_2})$ and $(0,0,0)$ satisfying $$ \lim_{z\to \infty}\frac{U(z)}{e{-\mu z}}=1, $$ where $\mu\in (0,\sqrt a)$ is such that $c=c_\mu:=\mu+\frac{a}{\mu}$. Moreover, $$ \lim_{(\chi_1,\chi_2)\to (0+,0+))}c{**}(\tau,\chi_1,\mu_1,\lambda_1,\chi_2,\mu_2,\lambda_2)=\infty$$ and $$\lim_{(\chi_1,\chi_2)\to (0+,0+))}c{*}(\tau,\chi_1,\mu_1,\lambda_1,\chi_2,\mu_2,\lambda_2)= c_{\tilde{\mu}*}, $$ where $\tilde{\mu}*={\min{\sqrt{a}, \sqrt{\frac{\lambda_1+\tau a}{(1-\tau){+}}},\sqrt{\frac{\lambda_2+\tau a}{(1-\tau){+}}}}}$. We also show that $(0.1)$ has no traveling wave solution connecting $(\frac{a}{b},\frac{a\mu_1}{b\lambda_1},\frac{a\mu_2}{b\lambda_2})$ and $(0,0,0)$ with speed $c<2\sqrt{a}$.

Summary

We haven't generated a summary for this paper yet.