Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Robust Bregman Clustering (1812.04356v3)

Published 11 Dec 2018 in math.ST, stat.ML, and stat.TH

Abstract: Using a trimming approach, we investigate a k-means type method based on Bregman divergences for clustering data possibly corrupted with clutter noise. The main interest of Bregman divergences is that the standard Lloyd algorithm adapts to these distortion measures, and they are well-suited for clustering data sampled according to mixture models from exponential families. We prove that there exists an optimal codebook, and that an empirically optimal codebook converges a.s. to an optimal codebook in the distortion sense. Moreover, we obtain the sub-Gaussian rate of convergence for k-means 1 $\sqrt$ n under mild tail assumptions. Also, we derive a Lloyd-type algorithm with a trimming parameter that can be selected from data according to some heuristic, and present some experimental results.

Citations (12)

Summary

We haven't generated a summary for this paper yet.