On stable maps of operator algebras (1812.04338v1)
Abstract: We define a strong Morita-type equivalence $\sim {\sigma \Delta }$ for operator algebras. We prove that $A\sim _{\sigma \Delta }B$ if and only if $A$ and $B$ are stably isomorphic. We also define a relation $\subset _{\sigma \Delta }$ for operator algebras. We prove that if $A$ and $B$ are $C*$-algebras, then $A\subset _{\sigma \Delta } B$ if and only if there exists an onto $$-homomorphism $\theta :B\otimes \mathcal K \rightarrow A\otimes \mathcal K,$ where $\mathcal K$ is the set of compact operators acting on an infinite dimensional separable Hilbert space. Furthermore, we prove that if $A$ and $B$ are $C^$-algebras such that $A\subset _{\sigma \Delta } B$ and $B\subset _{\sigma \Delta } A $, then there exist projections $r, \hat r$ in the centers of $A{**}$ and $B{**}$, respectively, such that $Ar\sim _{\sigma \Delta }B\hat r$ and $A (id{A{**}}-r) \sim {\sigma \Delta }B(id{B{**}}-\hat r). $