Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On stable maps of operator algebras (1812.04338v1)

Published 11 Dec 2018 in math.OA

Abstract: We define a strong Morita-type equivalence $\sim {\sigma \Delta }$ for operator algebras. We prove that $A\sim _{\sigma \Delta }B$ if and only if $A$ and $B$ are stably isomorphic. We also define a relation $\subset _{\sigma \Delta }$ for operator algebras. We prove that if $A$ and $B$ are $C*$-algebras, then $A\subset _{\sigma \Delta } B$ if and only if there exists an onto $$-homomorphism $\theta :B\otimes \mathcal K \rightarrow A\otimes \mathcal K,$ where $\mathcal K$ is the set of compact operators acting on an infinite dimensional separable Hilbert space. Furthermore, we prove that if $A$ and $B$ are $C^$-algebras such that $A\subset _{\sigma \Delta } B$ and $B\subset _{\sigma \Delta } A $, then there exist projections $r, \hat r$ in the centers of $A{**}$ and $B{**}$, respectively, such that $Ar\sim _{\sigma \Delta }B\hat r$ and $A (id{A{**}}-r) \sim {\sigma \Delta }B(id{B{**}}-\hat r). $

Summary

We haven't generated a summary for this paper yet.