Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On anti bounce back boundary condition for lattice Boltzmann schemes (1812.04305v2)

Published 11 Dec 2018 in math.NA, cs.NA, and physics.class-ph

Abstract: In this contribution, we recall the derivation of the anti bounce back boundary condition for the D2Q9 lattice Boltzmann scheme. We recall various elements of the state of the art for anti bounce back applied to linear heat and acoustics equations and in particular the possibility to take into account curved boundaries. We present an asymptotic analysis that allows an expansion of all the fields in the boundary cells. This analysis based on the Taylor expansion method confirms the well known behaviour of anti bounce back boundary for the heat equation. The analysis puts also in evidence a hidden differential boundary condition in the case of linear acoustics. Indeed, we observe discrepancies in the first layers near the boundary. To reduce these discrepancies, we propose a new boundary condition mixing bounce back for the oblique links and anti bounce back for the normal link. This boundary condition is able to enforce both pressure and tangential velocity on the boundary. Numerical tests for the Poiseuille flow illustrate our theoretical analysis and show improvements in the quality of the flow.

Citations (11)

Summary

We haven't generated a summary for this paper yet.