Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hierarchical Bipartite Graph Convolution Networks (1812.03813v2)

Published 17 Nov 2018 in cs.LG, cs.CV, and stat.ML

Abstract: Recently, graph neural networks have been adopted in a wide variety of applications ranging from relational representations to modeling irregular data domains such as point clouds and social graphs. However, the space of graph neural network architectures remains highly fragmented impeding the development of optimized implementations similar to what is available for convolutional neural networks. In this work, we present BiGraphNet, a graph neural network architecture that generalizes many popular graph neural network models and enables new efficient operations similar to those supported by ConvNets. By explicitly separating the input and output nodes, BiGraphNet: (i) generalizes the graph convolution to support new efficient operations such as coarsened graph convolutions (similar to strided convolution in convnets), multiple input graphs convolution and graph expansions (unpooling) which can be used to implement various graph architectures such as graph autoencoders, and graph residual nets; and (ii) accelerates and scales the computations and memory requirements in hierarchical networks by performing computations only at specified output nodes.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Marcel Nassar (17 papers)
Citations (18)

Summary

We haven't generated a summary for this paper yet.